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Second-order difference approximations are derived for a primitive barotropic model 
over a spherical geodesic grid and are compared to first-order conservative approxima- 
tions. The second-order approximation requires a viscosity term for stability. A given 
value of the viscosity coefficient reduces the high wavenumber noise more with the 
second-order scheme than with the first-order scheme. 

1. INTRODUCTION 

The recent use of a spherical domain for numerical atmospheric models has led 
to interest in improving finite-difference approximations for fluid flow on a sphere. 
Current spherical atmospheric models use approximations over grids defined by 
intersections of latitude and longitude circles. See, for example, Washington and 
Kasahara [I]. These grids must be modified near the poles for use with explicit 
approximations because the convergence of meridians, and hence grid points, 
approaching the poles imposes a very severe restriction on the maximum 
allowable time step through linear stability. The usual modification involves 
increasing the longitudinal grid increment (dh) in the neighborhood of the poles 
and suitably modifying the finite differences used in those regions. These schemes 
have reduced accuracy in the regions where the grid is modified [2]. 

In an attempt to avoid the problems associated with modifying a latitude- 
longitude grid, quasihomogeneous spherical grids were defined by Sadourny et al 
[3] and Williamson [4]. An example is shown in Fig. 1. These grids cover the sphere 
with almost equal-area, equilateral spherical triangles resulting in a variation in 
the grid interval of about 10 % of the mean value. Preliminary tests in Refs. [3] and 
[4] showed these methods to be superior to the conventional approximations over 
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FIG. 1. Spherical geodesic grid used for computations reported in this paper. 

latitude-longitude grids for the nondivergent barotropic vorticity equation. Com- 
parison of methods for the primitive barotropic model is not as clear cut. 
Williamson [S] showed that the popular type of energy-conserving approximations 
[6] become first order when applied to the spherical geodesic grid because of the 
nonuniform nature of the grid intervals. The truncation error has a very adverse 
effect on the mass divergence computations with grids of resolution greater than 
21” 2 - 

In this paper we derive second-order approximations over the spherical geodesic 
grid and compare results from these approximations with the results from the 
first-order conservative approximations. 

2. APPROXIMATIONS 

The equations to be integrated are those of the primitive barotropic model: 

T + V - (VhV) + F x hV + gV ; = 0, 

2 + V . (hV) = 0, 
(1) 
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where h is the height of the free surface and V is the vector velocity with components 
u and u in spherical coordinates. F is (f + (U/U) tan 0) k, where R is the radial 
outward unit vector, f is the Coriolis parameter, and a is the radius of the earth. 

The conservative first-order approximations are given in [5] and are not repeated 
here. The second-order approximations discussed here are assumed to have the 
form of a linear combination of values at the center point and the first ring of 
surrounding points. The coefficients are chosen so that the Taylors’ series expansion 
about the center point of the combination has a zero first-order error term. 

The double Taylors’ series in spherical polar coordinates is given by 

(2) 

where the subscript 0 denotes the point at which the approximation is applied and 
i denotes one of the surrounding points (see Fig. 2 or Ref. [7] for definition of 
local polar subscripting used here). 

In the following we give an example of how the approximations are derived. Let 
D be an approximation to the divergence V * V and suppose D has the form 

D = i ci *(Vi - V,)+ co.vo, 
i=l 

FIG. 2. Illustration of subscripts used in the finite-difference approximations. 
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where Ci are the coefficients to be determined so that D is second order. Substitution 
of (2) into (3) and rearranging yield 

D = co l Vo + g - i c,(B, - 0,) + g . f  q(& - ho) 

a=1 2=1 

+ -f$- * i tl C<(hi - Q2 + u(43)* 

Thus, requiring D be second order gives the following set of equations for the 
coefficients ci : 

t1 (hi - Ao) ci = -A-- E, 
acost 

jil (4 - eo)2 ci = 0, 

(4) 

(5b) 

(5c) 

i (4 - e,)(h - ~1 ci = 0, 
i-l 

(54 

where i is the unit vector in the longitudinal direction and j is the unit vector in the 
latitudinal direction. Equations (5) are a set of five vector equations in k vector 
unknowns c1 , c2 ,..., ek . 

Consider now an approximation G to the gradient Vh of the form 

G = i$ Wi - ho) + d&o . (6) 
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Substitution of the Taylors’ series for hi , requiring second-order accuracy, gives 

and 

a,=0 

di = ci , i = 1, 2 ,..., k, 

where ci are the solution to Eqs. (5). 
Similarly, the following second-order approximations are easily obtained: 

Vh2 h i ci(h: - h,,2), 
i-l 

V . (hV) e i ci l (hiVi - h,,V,) + co l (h,V,), 
id 

V * (VhV) A i ci * (VihtVi - v,,hovo) + co l WohVo), 

i=l 

(7) 

where the coefficients Ci are solutions to Eqs. (5). 
In order to apply the approximations listed above, Eqs. (5) must be solved at 

each grid point. These are a set of five equations in k unknowns where k is the 
number of grid points surrounding the point at which the approximations are 
applicable, Twelve grid points of the spherical geodesic grid have five surrounding 
points. At these points Eqs. (5) are sufficient to solve for the five coefficients. The 
other grid points have six surrounding grid points and hence six unknowns. One 
more equation is needed for a unique solution. 

A possible extra equation is formed by requiring that a higher-order error term 
such as a3/ae3 also be zero. However, no one condition was found for which the 
matrix was nonsingular at every grid point. 

The coefficients used for the computations reported here were derived in the 
following way: One of the six surrounding grid points is neglected and the 
remaining five points are used to define an approximation involving only five of the 
surrounding grid points. The five coefficients are obtained by solving Eqs. (5). Next, 
a different surrounding point is neglected and an approximation is defined over a 
different set of five surrounding points. This process is repeated neglecting each of 
the surrounding points. Thus, six different approximations are defined, each 
involving a different set of five of the surrounding points. These six approxima- 
tions, or sets of coefficients, are then averaged to obtain an approximation using 
all six surrounding points. 
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3. RESULTS 

Equations (1) were integrated using approximations (6)-(S) with Euler-backward 
[8] time stepping. The initial conditions given in Ref. [S] are for a wave which, in a 
nondivergent barotropic atmosphere, moves without change of shape. The analytic 
solution is not known for the divergent model. The second-order approximations 
were found to be unstable when no viscosity term was included in the equations. 
The stability did not improve by decreasing the time step indicating perhaps non- 
linear instability. A viscous term of the form vhV2V was added to the momentum 
equation. With a suitable value of v this term stabilized the scheme. The finite- 
difference form of the V2 operator is given in Ref. [4]. 

Figure 3 shows height fields from six-day integrations using first-order scheme 
11s of Ref. [5] for various resolutions and viscosity coefficients. Figure 4 shows 
height fields from the second-order scheme for the same cases. The time steps used 
were 20 min for first-order 5” grid, 10 min for first-order 290 grid, 10 min for 
second-order 5” grid, and 5 min for second-order 29’ grid. When these time steps 

24/2q -3, IO x IO5 

FIG. 3. Height fields produced by the first-order conservative scheme. The region covered 
by each figure is -90” to +90” latitude and 0” to 150” longitude, a little over two periods of the 
initial conditions. 
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FIG. 4. Height fields produced by the second-order scheme. The region covered by each 
figure is the same as Fig. 3. 

were doubled, the schemes were unstable. The linear stability condition is difficult 
to calculate for the spherical geodesic schemes. The condition would be slightly 
different at each grid point since the coefficients are different at each grid point. The 
integrations of the second-order scheme required twice as much computer time as 
the first-order scheme. This difference is mainly due to the difference of the maxi- 
mum stable time steps of the two cases. The first column of both figures is for a 5” 
grid with v equal to 5 x lo5 m2 set-l. The second column is for a 5” grid with Y 
equal to 10 x lo5 m2 set-l. The value of 5 x lo5 is close to the value given by 
Richardson [9] for the 5” mesh size. As can be seen, it does not eliminate the 
small-scale noise. The second-order scheme has less small-scale noise than the 
first-order scheme. The value of 10 x lo5 keeps the second-order scheme stable, 
but damps the main wave considerably. 

Integrations with second-order schemes over the 230 grid seem to be more 
unstable than over the 5” grid. Integrations with v equal to 5 x lo5 showed much 
higher amplitude in the two-grid interval wave with the second-order scheme over 
the 28” grid than with the 5” grid at day 6. Results with v = 10 x lo5 over the 
2Q” grid are shown in the right column of the figures. The wave is seen to have a 
larger amplitude than the 5” case with the same value of v. Again, the second-order 
scheme has less small-scale noise than the first-order scheme. 
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TABLE I 

Energy x IO* m* set+ 

Order Resolution Y x 10” m2 set-1 Day 3 Day 6 

1 5” 5 4.579 4.564 
1 5” 10 4.569 4.553 
1 26 10 4.576 4.556 
2 5” 5 4.587 4.583 
2 5” 10 4.576 4.556 
2 2Q 10 4.581 4.569 

The total energy for the above cases is listed in Table I for day 3 and day 6. The 
initial energy was 4.616 x lo8 m3 sec- 2. Both kinetic and potential energies 
decreased monotonically during the six days. In all of the cases the energy decreased 
more during the Iirst three days than during the last three. This is probably caused 
by an initial adjustment of the velocity and height fields. It is seen again that the 
2g cases have less total damping than the 5” cases with the same value of v and 
the second-order scheme has slightly less damping than the first-order scheme. 

4. CONCLUSIONS 

These second-order approximations eliminate the errors observed in an earlier 
paper in mass flux calculations using first-order conservative schemes over 5” grids. 
The second-order schemes, however, require a relatively large viscosity coefficient 
to prevent instability. With viscosity included the solution produced by the second- 
order scheme has less high wavenumber noise than the solution produced by the 
first-order scheme using the same value of the viscosity coefficient. The large-scale 
patterns of the two solutions are very similar. 
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